On the Frobenius problem for {a,ha+d,ha+bd,ha+b2d,…,ha+bd}
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn the Frobenius Problem for Geometric Sequences
Let a, b, k be positive integers, with gcd(a, b) = 1, and let A denote the geometric sequence a, ak−1b, . . . , abk−1, b. Let Γ(A) denote the set of integers that are expressible as a linear combination of elements of A with non-negative integer coefficients. We determine g(A) and n(A) which denote the largest (respectively, the number of) positive integer(s) not in Γ(A). We also determine the ...
متن کاملThe Frobenius problem on lattices
It is widely known that if p and q are relatively prime positive integers then (a) the set of linear combinations of p and q with nonnegative integer coefficients includes all integers greater than pq − p − q, (b) exactly half the integers between 0 and pq − p − q belong to this set and (c) an integer m belongs to this set if and only if pq−p−q−m does not. A multidimensional version of statemen...
متن کاملThe Frobenius Coin Problem Upper Bounds on The Frobenius Number
In its simplest form, the coin problem is this: what is the largest positive amount of money that cannot be obtained using two coins of specified distinct denominations? For example, using coins of 2 units and 3 units, it is easy so see that every amount greater than or equal to 2 can be obtained, but 1 cannot be obtained. Using coins of 2 units and 5 units, every amount greater than or equal t...
متن کاملThe Parametric Frobenius Problem
Given relatively prime positive integers a1, . . . , an, the Frobenius number is the largest integer that cannot be written as a nonnegative integer combination of the ai. We examine the parametric version of this problem: given ai = ai(t) as functions of t, compute the Frobenius number as a function of t. A function f : Z+ → Z is a quasi-polynomial if there exists a period m and polynomials f0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2016
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2015.10.020